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Abstract

The dynamics of quantum vortices con�ned in thin channels at zero temperature was investigated
through a series of computer simulations. The basics of the underlying theory is described before
the details of the simulation are discussed at length. Next a few preliminary results are presented in
agreement with the literature so as to establish con�dence in the main body of �ndings. The main
set of results are then presented, with focus on the e�ects of channel width and vortex density on
the phenomenon of bifurcation; the splitting of a single chain into two chains and on the formation
of defect points from the asymmetry of odd numbers of free vortices in the channel. Issues with the
investigation are �nally briey discussed, such as the scaling of results with simulation domain size.
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1 Introduction

Vortex dynamics in type II superconductors is an active area of research in modern theoretical physics, lending
itself both to the study of the microscopics of superconductors and the non-linear e�ects of matter driven
through periodic media.

In the course of this investigation the phenomenon of quantum vortices and their dynamics in very thin, arti�cial
ow channels is discussed. Starting with a theoretical background of how vortices arise from superconductivity,
this report then describes a series of simulations designed to explore a small part of the parameter space
associated with driving a series of mutually repulsive vortices which are free to move through an arti�cial
environment of equally repulsive pinned vortices.

Some of the associated theory of non-linear dynamics is discussed in the context of a classical, one dimensional
analogue of the above system of vortices, going on to introduce soliton solutions of dynamical systems, which
are waves exhibiting an unusual balancing of dispersive and non-linear e�ects.

The width of the channel through which the free vortex matter is driven becomes a point of particular interest
and the focus of the majority of the simulations presented. In the regime of thin channels, the pressure exerted
on the free vortices tends to force them into a single row, however as this pressure decrease with increasing
channel width, there comes a critical point where the symmetry associated with a single row of vortices breaks,
and it becomes favourable for the free vortices to form two rows, a process called bifurcation.

The properties of this transition under a variety of di�erent circumstances are discussed with the support of a
series of presented observations of the characteristics of this bifurcation.

2 Superconductors

2.1 Introduction

Superconductivity can be characterised by the emergence of two di�erent phenomena at a certain critical tem-
perature; the exhibition of perfect diamagnetism by a material, or the sudden vanishing of electrical resistance
from a material. It has wide and varied applications both in experimental physics and modern technology,
ranging from beam magnets in the LHC at CERN to the development of Maglev trains. This has helped make
it one of the most studied phenomena of the last century and continues to be a very active area of research.

Superconductivity was �rst discovered by accident when Heike Kamerlingh Onnes was investigating the electrical
properties of Mercury at low temperatures. At a certain temperature, approximately 4.2K, he observed that the
material showed in�nite conductivity. It was soon discovered that many materials showed the same behaviour
at their own characteristic critical temperatures. [22]

Since then, hundreds of materials have been found which exhibit the phenomena of superconductivity and the
task of �nding a microscopic description of this behaviour has been at the forefront of theoretical physics.

2.2 Phase Transitions and the Ginzburg-Landau Theory of Superconductivity

The sudden drop to zero of a material’s resistivity can be characterised as a second order phase transition.
Second order phase transitions are so called because a discontinuity occurs in the behaviours of variables which
are expressed as second derivatives of the free energy.

In the case of superconductivity, the Gibbs free energy of a material is quadratic with respect to changes in
magnetic �eld whilst in the superconducting phase, but has almost no dependence on changes in the magnetic
�eld whilst in the normal phase.[19]

There are some very well established theories dealing with phase transitions of this kind. The one which will
be of greatest use in developing the theory behind this investigation is Landau’s theory of second order phase
transitions. The underlying idea behind this theory is the introduction of an order parameter �, which remains
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zero on one side of a phase transition, and becomes a non-zero function of the relevant thermodynamic variables
on the other side.

A very important concept in Landau’s theory is the Landau free energy. One expects that there will be a
di�erence in the free energy densities of a system before and after a phase transition, and in Landau theory this
di�erence is expanded in powers of the order parameter;

f = f 0 +
r
2

� 2 + b� 4 + ::: (1)

where the coe�cients r and b are smooth functions of the relevant thermodynamic variables (e.g Temperature,
Pressure etc).

The Ginzburg-Landau theory of superconductivity is built around the postulate that the order parameter for
the superconducting phase transition behaves like a wave function, such that � !  . This turns out to be
a powerful idea, since in the superconducting state, electrons pair up via mutual interactions with nuclei to
form cooper pairs. This combination of two fermionic bodies leads to the cooper pairs behaving as composite
bosons, which lead to a ‘macroscopic’ wavefunction, where all of the superconducting charges behave as a single
quantum mechanical object.

On inclusion of external magnetic �elds, and under the assumption that the wavefunction-order parameter is
small so that higher order terms can be neglected, an expression for the Ginzburg-Landau free energy density
in a superconductor takes the form;[22]

f = f + � j j2 +
�
2

j j4 +
1

2m

���
�

� jh r �
e
c

A
�

 
���
2

+
B 2

8�
(2)

In equation 2 the �nal term relates to the energy density per unit volume coming from the magnetic �eld. The
penultimate term gives the free energy density contribution from gradients in the �eld with a speci�c choice of
gauge, incorporated using a minimal coupling type procedure. This equation is fundamental in understanding
the di�erence between two di�erent types of superconductors.

2.3 The Meissner E�ect: Type I and Type II Superconductors

Classically diamagnetism is the tendency of a material to react to an applied magnetic �eld with an opposing
magnetic �eld, caused by changes to the magnetic dipole moment of the constituent atoms.[12] When a ma-
terial enters the superconducting phase, magnetic ux is immediately expelled from the material, decreasing
exponentially inwards from the boundary of the material. This is known as the Meissner e�ect. The fall o� of
magnetic ux to zero from the edge of the material happens over a distance known as the penetration depth� ,
de�ned by equation 3.[22]

� �
1

B (0)

Z 1

0
B (z)dz (3)

The Meissner e�ect applies to all superconductors when the applied �eld is weak, however the behaviours
of superconductors can be categorised into two types when stronger magnetic �elds are applied. The �rst,
simplest type of superconductor (type I), expels all of the magnetic ux up to a certain ‘critical’ �eld Bc, at
which point it becomes energetically unfavourable for the material to expel ux, and so the magnetic �eld
completely penetrates the material, destroying the superconductivity.

The second type of superconductor (type II) is more complicated. Qualitatively, upon reaching a certain lower
critical �eld, the superconductor enters a new phase, where the sample is partially penetrated by magnetic
ux until a second upper critical �eld is reached where the material is completely penetrated by magnetic ux
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and thus superconductivity is destroyed. It is this phase with partial ux penetration, the Abrikosov vortex
phase, which will be of principal interest in this investigation. The qualitative di�erences between the types of
superconductor are nicely demonstrated in �gure 1.

Figure 1: Typical plots for type I (left) and type II (right) superconductors. It is clear that type I superconduc-
tors experience a sharp drop in magnetisation atBc whereas in type II magnetisation drops o� steadily between
Bc1 and Bc2, while the density of ux penetration increases.

A more thorough description of type II superconductors can be reached by �rst considering equation 4; the
Ginzburg-Landau di�erential equation, which is obtained by minimising the free energy.

� + � j j2  +
1

2m�

�
� j ~r �

e�
c

A
� 2

 = 0 (4)

In the limit that j j is much than the value of  deep inside the superconductor, one can make the simpli�cation
of dropping the term in j j2  from equation 4 to give equation 5.

�
� j r �

2�
� 0

A
� 2

 =
1
� 2  (5)

Where � 0 is the ux quantum, described in detail in section 2.4 and � is known as the coherence length, another
important length in the superconducting phase, characterising the distance over which the order parameter
varies. By considering a situation of a magnetic �eld parallel to the z-axis of a bulk superconductor, given
by the Gauge choice in the vector potential A � ŷ = Bx and assuming a solution to equation 5 of the form
 = e� ik y y e� jk z z f (x), equation 6 can quickly be deduced.

�
1
� 2 � k2

z

�
f (x) = � f 00(x) +

�
2�B
� 0

� 2 �
x �

ky � 0

2�B

� 2

f (x) (6)

This is completely analogous to the well-known Landau levels problem. We can therefore immediately write
equation 7, from which we can then choosen and kz such that the magnetic �eld takes its maximum value
(n = kz = 0), giving equation 8.

B =
� 0

2� (2n + 1)

�
1
� 2 � k2

z

�
(7)

Bc2 =
� 0

2�� 2 (8)

=
�
�

p
2Bc � �

p
2Bc (9)
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Where a few standard relations[22] have been used to write this upper critical �eld in terms of the earlier
discussed critical �eld. This gives a clear di�erentiation between the type I and type II superconductors. Type
I superconductors are those for which the second critical �eldBc2 falls below the main critical �eld Bc, so that
the magnetic �eld is completely destroyed at B = Bc. Type II superconductors, on the other hand, are not
completely penetrated by magnetic ux, even above the main critical �eld. Instead the ux penetrates the
superconductor more and more until the second critical �eld is reached, at which point the superconductivity
no longer exists.

2.4 Fluxoid Quantisation and Vortices

When a type II superconductor enters the Abrikosov vortex phase, ‘holes’ of normal material form in regions
where the magnetic ux begins to penetrate the material. It is therefore useful to consider what happens to
magnetic ux in a multiply connected superconductor. The most useful way to do this is to integrate the
expression for the supercurrent velocity around a closed contour, which is entirely inside the superconductor,
whilst enclosing a normal region. This is illustrated in �gure 2. The supercurrent velocity is simply the velocity

Figure 2: An illustration of the integration contour for deducing the quantisation of ux. The shaded region
is superconducting and the white region is normal material. The integration contour is represented by the
arrow.[1]

of the supercurrent carriers inside the material, and is given by equation 10, which is derived in detail in the
appendix.

v s =
~

2m
r ’ �

e
m

A (10)

Rearranging slightly and integrating gives;
I

C
~(r ’ ) � dl =

I

C
2mv s � dl +

I

C
2eA � dl (11)

Since we would be unphysical to allow one-to-many behaviour of the phase’ , the left hand side of the above
equation can be assumed to simply give integer multiples of 2� ~. On inclusion of this, and on application of
Stoke’s theorem [3] we �nd;

n� ~ =
I

C
mv s � dl + e

Z

S
(r � A ) � dS (12)

n
h
2e

� n� 0 = � +
m
e

I

C
v s � dl (n 2 Z) (13)

This indicates that the magnetic ux through a normal region enclosed by a superconducting region is quantised
in units of � 0. At the lower critical �eld, it becomes energetically favourable for the superconductor to maximise
the amount of interface between normal and superconducting regions, and so the material is penetrated by ux
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in units of � 0 spaced in such a lattice as to try to minimise the distance between neighbouring ux lines. These
ux lines are then circled by the superconducting particles, forming vortex lines spanning the length of the ux
lines penetrating the superconductor.

Vortices interact with one another via a mutual repulsion, the strength of which can easily be calculated by
�rst considering one of the London equations for superconductivity. [22]

r 2B (
r
�

) =
1
� 2 B (

r
�

) (14)

It is reasonable to assume that vortex lines have symmetry both with respect to angle and along their length.
The radial component of the cylindrical Laplacian can therefore be considered on its own;

1
r

d
dr

�
r

dB
dr

�
=

1
� 2 B (15)

) r 2 d2B
dr2 + r

dB
dr

�
r 2

� 2 B = 0 (16)

This di�erential equation is very well known as the modi�ed Bessel equation, the solutions of which can therefore
be used to give an expression for the radial component of the magnetic �eld. If one considers the change in free
energy of a vortex line due to the presence of another vortex line, one �nds that this is directly proportional
to the magnetic �eld strength. This change in free energy is in fact the potential between vortices, and so
the potential is in fact dependent on the bessel function. The force is easily obtained by di�erentiating this
expression, giving, �nally, the form of the expression for the force between vortices. [3] [25];

F12 / K 1

� r
�

�
r̂ (17)

This mutual repulsion of the lattice of vortices that form within the superconductor means that it is energetically
most favourable that the vortices arrange themselves in a triangular, close packed lattice, known as the Abrikosov
lattice.[22].

2.5 Vortex Pinning, Flow and Dissipation

The physical set-up for this investigation will be discussed further in section 4, however, some of the elements
are discussed here.

In pure type II superconductors in the vortex phase, the vortex lines are able to move freely through the sample,
so much as the mutual repulsion between them will allow. However, if there are impurities within the material,
it is often energetically favourable for the vortices to ‘pin’ themselves to the impurity. These ‘pinned’ vortices
thus e�ectively ignore the repulsive forces of other nearby vortices. The relevance of this pinning is that it
allows for mesoscopic structures to be fabricated by arti�cial insertion of impurities into the superconductors.

Another feature in the behaviour of vortices is their behaviour under an external �eld, such as a potential
di�erence. This is most succinctly stated in terms of the supercurrent density Js and its action on a single
vortex;

F =
1
c

(Js � � 0 ) (18)

This means that any vortex motion due to an externally applied current will in fact be transverse to said current.
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There is another factor a�ecting vortex ow. The moving ux line will itself induce an electric �eld parallel to
the supercurrent, which will act to oppose the velocity of the vortex. Since the magnitude of this resistance is
proportional to the velocity, it is su�cient to simply write the form that such a dissipative force will take. The
rate that energy dissipates will be given by @E

@t = � v 2. It is therefore easy to deduce the magnitude of the force
on a vortex due to dissipation.

m
@v
@t

= �v (19)

3 Periodic Potentials

It will be seen in section 4.1 that a periodic potential plays an integral part in this investigation. There is
a great deal of physics associated with the motion of matter through periodic potentials. Some of the most
important subjects to consider are briey outlined here.

3.1 Frenkel-Kontorova Models

The nature of the physical system to be investigated bears a great resemblance to so called ‘Frenkel-Kontorova
models’, which are non-linear classical systems comprising elastically connected particles moving in a periodic
potential. Figure 3 shows the basic set-up of the model.

Figure 3: The basic construction of the Frenkel-Kontorova model [6]. Particles connected with springs of spring
constant g and natural length a0 are subjected to a potential with period as

If the particles are given a positive velocity, it is clear that the classical Hamiltonian for the system can be
written in dimensionless units as;

H =
X

n

�
1
2

_x2
n + (1 � cosxn ) +

g
2

(xn +1 � xn � a0)2
�

(20)

Where the �rst term is simply the kinetic energy of each particle and the second term represents a periodic
potential whose potential amplitude is As. The third term gives the elastic potential energy between the particle
and its nearest neighbours. This will be a key simpli�cation over our investigations, as we will be considering
interactions with particles other than the nearest neighbours.

This Hamiltonian implies an equation of motion for each particle. This equation of motion can be obtained
by once di�erentiating equation 20 with respect to the generalised coordinatexn . The only terms of the sum
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involving xn are;

H
��
x n

=
1
2

_x2
n + (1 � cosxn ) +

g
2

�
(xn +1 � xn � a0)2 + ( xn � xn � 1 � a0)2�

(21)

@H
@xn

=
@
@t

_xn + sin xn +
g
2

@
@xn

�
2x2

n � 2xn (xn +1 � a0) � 2xn (xn � 1 + a0)
�

(22)

=
@2xn

@t2
+ sin xn � g [xn +1 + xn � 1 � 2xn ] (23)

It is here useful to write the equations in terms of a displacement �eldu(x), which gives a particles displacement
from its natural equilibrium (i.e. un (x) = xn � na0 and @u(x n )

@t = @xn
@t ). The equation of motion in terms of this

new variable is;

d2un

dt2 = Fint (as + un +1 � un ) � Fint (as + un � un � 1) � Fsub (un ) (24)

With Fint (u) = � @
@uVint (u) is the force due to the elastic potential between particles andFsub = � @

@uVsub (u) is
the similarly de�ned force on a particle due to the periodic potential. Changing to a variablevn = ( un � un � 1)=as
we see;

as
d2vn

dt2 = 2Fint (as + asvn ) � Fint (as + asvn +1 ) � Fint (as + asvn � 1) � Fint (un � 1) + Fsub (un ) (25)

By changing to continuous variables and expandingvn +1 , we eventually gather the partial di�erential equation
in u;

@2u
@t2

�
@2u
@x2

= sin u (26)

This is known as the Sine-Gordon equation.

3.2 The Sine-Gordon Equation and Solitons

One of the most celebrated solutions to the Sine-Gordon equation becomes important for this investigation.
This is the soliton solution.

Solitons are waves which exhibit particle like behaviour, with de�nite energy and momentum travelling with
the wave. In other words, solitons are waves whose constituent particles do not have a unique, �xed equilibrium
point.

The mathematical form of a soliton solution can be found by making an ansatz that the solution takes the form;

� = 4 tan � 1
�

� (x)
 (t)

�
(27)

The mathematical detail of determining expressions for� (x) and  (t) can be found in the appendix, where the
following expressions are eventually found;

� 2
x = � k2� 4 + m2� 2 + n2 (28)

 2
t = k2 4 + (1 � m2) 2 � n2 (29)

These equations are not easily solvable except in the easiest cases (i.e.n = k = 0 and m > 1), in which case
the following solution is quickly found;

u = 4 arctan

"

exp

 

�
x � �t

p
1 � � 2

!#

(30)

With � =
p

m2 � 1=m. This gives the form of the simplest types of single soliton solutions to the Sine-Gordon
equation, known as kink-type solutions.
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4 Thin Channels - Main Investigation

4.1 Simulation Geometry

The simulations in this investigation were of free vortices con�ned between two arrays of pinned vortices,
separated by a certain distance. This distance was de�ned as the natural dimensions for the Abrikosov lattice
structure, plus an extra width parameter � .

The two rows of pinned vortices at the immediate edges of the channel were given an o�set relative to one
another in the longitudinal axis. This is quanti�ed in the parameter � . These parameters are demonstrated in
�gure 4, together with the arrangement of pinned vortices beyond the transverse channel edges.

Figure 4: A schematic view of the geometry and parameters associated with the simulation. Solid circles
represent pinned vortices. The channel extends to in�nity beyond this diagram in both positive and negative x.

The system is de�ned as commensurate when upon relaxation of the free vortices, in the absence of any kind
of driving force, the system is in a perfect Abrikosov lattice. The constant distancesa0 and b0 are de�ned such
that when � = � = 0 the system is commensurate, as in �gure 5.

Throughout this report, � and � will both be attributed units of a0, unless otherwise stated.

Figure 5: Demonstration of commensurability and de�nitions of a0 and b0. Hollow circles represent free vortices.

It is important to realise that a set-up which is commensurate for a single row of vortices is in fact not
commensurate for two rows. In fact, in order to have a commensurate system for two rows of free vortices, the
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system must be maximally incommensurate for a single row (i.e.� = 0 :5).

4.2 Accessible Parameters

This investigation has a great deal of parameter space associated with it. Unfortunately under the constraints
of time it was not possible to thoroughly explore all variables, and so the majority remained constant for the
duration of the investigations.

� Commensurability ( � ) - Quanti�cation of the o�set of the two lattices forming the transverse edges of the
channel, demonstrated in �gure 4.

� Additional Channel Width ( � ) - The separation of the transverse edges of the channel, on top of the
natural width b0 . Demonstrated in �gure 4.

� Base Number of Free Vortices (N ) - The number of free vortices required to perfectly �ll an Abriksov
lattice. Since the limitations of computer simulation require a �nite number of �xed and moving vortices,
albeit with periodic boundary conditions to represent an in�nite system, this variable could be de�ned as
the number of unit cells in the simulation.

� Extra Free Vortices (n) - The number of free vortices in the system additional toN , over�lling the lattice.

� Vortex Number Ratio ( %) - The ratio of n=N , introduced to compare systems with di�erent N on the
same scale.

� Driving Force (Fd) - The force acting on every vortex in the channel such that free vortices tend to move
along the channel. This is a parameter that is kept constant throughout this investigation.

� Dissipation (� ) - The value governing the rate at which moving vortices tend to slow down, proportional
to their velocity. The action of � is described in equation 19. This is another parameter which remains
largely unchanged throughout this simulation, although in some instances it is reduced to zero.

� London Penetration Depth (� ) - The physical signi�cance of this parameter is described in section 2.3.
In the simulations it almost solely a�ects the range and strength of the vortex-vortex interaction, and is
kept constant throughout.

� Cut-O� Radius ( r c) - A runtime saving feature built into the simulations, this is the radius of the circle,
centred on a free vortex, containing all the vortices used in the calculation of the force on that vortex.
It is chosen such that the force contribution from outside the circle are negligible. This parameter would
change with � , but since both are constant throughout this investigation, treatment of this relation is
unnecessary.

4.3 Literature Review - Besseling et al

This investigation was originally motivated by the work carried out in [5], in which the authors explore the
dynamics of vortices in a large number of di�erent situations. This paper was concerned primarily with channel
widths wider than those under discussion here, and they did a large amount of work on so-called ‘random’
pinning potentials, where each pinned vortex would be randomly displaced from the ‘ordered’ position at the
transverse edge of the channel, both inx and y.

However, some sections of the paper were devoted to a short, relatively qualitative exploration of the types of
ordered channels and vortex densities discussed here. The focus of [5] is more on the motion of what they call
‘defects’ in the system (theirs is a di�erent de�nition to that used later in this report). They de�ne a defect
as a disturbance to the equilibrium of the number of vortices in the system, or in other words the parameter
de�ned as n in the above section. In their investigations they look at the e�ect of both positive and negative
n, characterised as ‘interstitials’ and ‘vacancies’ respectively.
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The e�ect they observe is of the emergence of Sine-Gordon topological solitons around their defects, with a
vacancy leading to a kink solution and an antikink in the case of interstitials. They then go on to explore how
their defects a�ect the dynamics of single chain vortex ow through the system, which is a little way removed
from the topic of our investigation.

However, the behaviour of a static system under introduction of an interstitial provides an interesting point
of reference for this investigation, since our simulations can be easily modi�ed to reproduce a result from [5],
providing a certain level of assurance that they are behaving as they should. A description of the procedure
used both by us and the authors of [5] and presentation of our results can be found in section 6.1.

The other result of note presented in [5] is that of elastic shear waves, where for a system of multiple chains of
free vortices with channel edges longitudinally shifted, so as to preserve commensurability (via the parameter� ,
see section 4.1), oscillations in the transverse velocity of vortices is observed. This e�ect has also been observed
in our simulations, and will be presented in section 6.5.

These oscillations are the e�ect of the composite interaction of the multiple rows with one another together with
the transverse channel edges. It is mathematically very di�cult to quantitatively demonstrate the existence and
magnitude of these S-waves (see Appendix 3 in [5]), however qualitatively they can be thought of as a periodic
lagging and leading of the rows of free vortices with respect to the pinning potential.

4.4 Experimental Accessibility of the System

This investigation is useful in its experimental accessibility.This means that the theoretical framework developed
for the study of matter driven through periodic media may be veri�ed and observed.

The experimental method associated with the thin channels con�guration is as follows. First, a two layered
structure is formed by applying a thin �lm of one type of superconducting compound on to a slab of a di�erent
superconducting compound. The two di�erent superconductors are chosen such that the �lm is a ‘hard’ super-
conductor, meaning that vortex lines will tend to strongly bind themselves to pinning sites, and the slab is a
‘soft’ superconductor where the opposite is the case, and pinning e�ects are negligible.

Using nano-fabrication techniques, pinning sites can be arti�cially, precisely distributed through the hard su-
perconductor. A channel of the appropriate width is then chemically etched into the hard superconductor. This
means that the vortex lines which pass through the channel will only pass through the soft superconductor,
and will experience minimal pinning forces. These are the free vortices of our investigation. Vortices passing
through both the hard and the soft superconductor will tend to be pinned in position, and so form the transverse
channel edges of our investigation. Figure 6 shows a typical experimental set-up.

Figure 6: A representative diagram of a typical experimental set-up with typical superconductors [14], viewed
from an angle such that one is looking longitudinally down the channel. The red lines represent pinned vor-
tex lines, the white space the hard superconductor (NbN ) and the o�-white space the soft superconductor
(amorphous Nbx Ge1� x ). The driving force along the channel would be achieved via a supercurrent applied
horizontally in this diagram.
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5 The Simulation

5.1 Basic Simulation Structure

The simulation of vortices in thin channels was constructed in the C++ language together with the Boost
mathematical function libraries. The �rst structural decision made was to handle all two dimensional systems
using vector algebra. A vector class was therefore written to handle all of the necessary vector operations, and
separated into a header �le separate from the main body of the code. This class can be found in appendix D. It
was also decided that each of the moving vortices should be de�ned as an object holding the position, velocity
and acceleration. This data structure was written as a struct named ‘particle’, with members ‘pos’, ‘vel’ and
‘acc’, each a member of the 2D vector class mentioned above.

The code has a relatively logical structure. First, the positions of all of the pinned vortices are calculated
based on the geometry described in section 4.1, stored in ‘particle’ structures and then collected into a pair of
1 dimensional vector arrays. A separate array is created to track the free vortices, which are evenly distributed
along the length of the channel, with a slight transverse displacement so as to avoid potential meta-stable states.

The underlying time loop is then initiated, followed by a loop through the array of free vortices. For each of
free vortices, the distances from all other vortices, pinned and free, are calculated. Those within a pre-de�ned
cut-o� radius, chosen so that any further vortices would have negligible e�ect on the overall force, are included
in a cumulative calculation of the force on the free vortex. In this investigation, a cut-o� radius was chosen such
that the argument of the modi�ed bessel function never exceeded 10, meaning that the returned value would
never exceed� 10� 5.

This force calculation is exempli�ed in the following code fragment;

vec1 = moving[i].pos.vector_from(moving[j].pos);
separation = vec1.magnitude();
vec1 = vec1.normalised();
vec1 = vec1*bessel(separation,1.0);
vec2 = vec2 + vec1;

First the vector between the subject vortex and the forcing vortex is obtained and its length found. Next the
vector is normalised to give a unit vector in the direction of the force. The original length, the separation of
the vortices, is then used as the argument in a Bessel function routine to give the strength of the force. This is
then the length given to the force vector, which is then added to the vec2 object, which is a cumulative vector
sum of all forces acting on the subject vortex.

After this calculation for all other vortices, including those incorporated via the periodic boundary conditions,
dissipative and driving forces are added. The �nal force on the subject vortex is stored as its acceleration. This
process is completed for all free vortices and then all free vortices are updated simultaneously according to the
algorithm in section 5.2. This neutralises the small asymmetries from updating separately. The time loop is
then moved one step forward and the forces calculated again.

Small changes are made to this basic structure to accomodate the quantities under investigation. However
everything stems from this underlying structure.

5.2 The Update Algorithm

Once the force on every free vortex has been calculated for a particular time-step, the discrete dynamics of
those vortices then need to be updated. The update algorithm used in these simulations is based upon the
fundamental relationships between acceleration, velocity, displacement and time, so that, in the discrete form
the equations might be;

� v = � a� t (31)
� x = � v� t (32)
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Where the � a; � v and � x represent the discrete changes in acceleration, velocity and position respectively.
The � a is already de�ned up to a constant inertia as the force on the vortex, as calculated in the algorithm
of section 5.1. The changes in velocity and position can then be added to the existing stored values associated
with the vortex.

This concept can be considered as a �rst order Runge-Kutta algorithm for the above pair of coupled ordinary
di�erential equations. In order to increase the accuracy and stability, as well as avoid some of the lower order
computational errors, a second order Runge-Kutta routine was written to update vortices. This second order
method consists of taking the weighted average of two applications of the 1st order method, exempli�ed in the
following code fragment, with p representing the vortex.

dacc = p.acc*dt;
p.vel = p.vel + dacc;

dvel = p.vel*dt*0.5;
dvel = p.vel + dvel;
dvel = dvel*dt;

p.pos = p.pos + dvel;

This algorithm is applied to all vortices in the system simultaneously at the end of each time step.

5.3 Periodic Boundary Conditions

In general for this investigation we were interested in channels of in�nite length populated with an in�nite
number of free vortices, with the variable quantity being density %. It was therefore necessary to impose
periodic boundary conditions on the simulation.

This was achieved through a combination of techniques. Firstly, the boundaries are de�ned, and any vortex
which was found outside of the longitudinal boundaries of the channel immediately after they were updated
were moved to the opposite longitudinal boundary. This was achieved by de�ning a point at the centre of the
boundary, as in �gure 7. The vector linking this point with the position of the vortex which had crossed the
boundary was added to the corresponding point on the opposite boundary.

In order to make the system periodic with respect to the pinned vortices, both �xed arrays were extended
beyond the boundaries, such that a vortex sitting at the boundary would see vortices as far away as the cut-o�
radius. In order to make the system periodic with respect to the other moving vortices, a dummy vortex was
created with position calculated in the same way as when moving from one boundary to the other (�gure 7).
The force on this dummy vortex was then calculated and added to the force on the original vortex, contributing
to its total acceleration.

6 Results and Observations

The above simulation was adapted to perform a series of investigations into the e�ects of various parameters
and dynamics of the system. Where applicable, all investigations were carried out both for� = 0, which
is commensurate for a single chain of vortices but incommensurate for two, and for� = 0 :5, which has the
opposite characteristic of being maximally incommensurate for a single row and completely commensurate for
two stationary rows.
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Figure 7: Demonstration of the method used to impose periodic boundary conditions on the simulation. The
dotted lines represent the edge of the simulation, with the �xed arrays extending beyond them. The solid hollow
vortex would be moved, since it is outside the system. The vectora from the boundary would be calculated, then
added to the opposite boundary, resulting in the position of the hollow broken vortex. The red dots represent
the point this vector is calculated from, namely the y = 0 line at the channel edge. In the case of imposing
periodicity of forces between moving vortices, the force on the broken hollow vortex would be calculated, and
combined with the force on a ‘dummy’ vortex at the position of the solid hollow vortex.

6.1 Stationary System - Interstitials

In order to be convinced of the validity of our simulations, the simulation required to produce the interstitial
behvaiour observed in [5] was reproduced.

The basic construction of the simulation was to �rst set the velocity-dependent dissipation (� ) to zero, with all
other parameters set to � = � = %= 0. The system was then initialised as in �gure 8, with a vortex in every
commensurate position (i.e an Abrikosov lattice) with one extra free vortex placed between two other vortices.
The system was then given a reasonable amount of time to relax. At the end of this time, the displacement of
each vortex from its natural equilibrium position was measured and plotted against the initial vortex position.
The vortices were all initialised on the y = 0 line, making for a 1 dimensional system under the symmetry of
the transverse channel edges.

Figure 8: A schematic view of the starting point for the generation of �gure 9, before the system is allowed to
relax. The shaded red circle represents the interstitial, hollow circles are free vortices and solid black represent
pinned vortices.

An analytical treatment of this investigation was carried out in [5], giving the shape of the resulting plot to be
of the form;

u(x) = 2 a0 arctan

"

exp

 
� � (x � N

2 )
p

3� 3�a 0

!#

(33)

Although this equation makes the assumption that the London penetration depth of the simulation � is much
less than the principal dimensionsa0; b0 which is not the case in our simulations (� = 1), however this prediction
still produces a good agreement with data collected using our simulations, presented in �gure 9.

Page 15 of 35



Jim Barrett Project Dissertation

ççççççççççççççççççççççççççççççççççççççççççççç
ç
ç
ç

ç

ç

ç

ç

ç

ç
ç
ç
ççççççççççççççççççççççççççççççççççççççççççççç

20 40 60 80 100 120
x

0.2

0.4

0.6

0.8

1.0

UHxL

Figure 9: Plot of the displacement of each vortex from its natural commensurate pointu(x) as a function of
starting position x. Each hollow circle represents a data-point taken from the simulation results, the solid line
gives the theoretical prediction of equation 33. This data represents a simulation withN = 100 and n = 1, and
Fd = � = 0.

6.2 An Overview of Bifurcation

It has been observed that by extending beta, one �nds that at some critical point, hereafter called� c, the single
chain of vortices �nds it favourable to split into two rows of lower density. This process is called bifurcation.
The � c were found for a variety of di�erent vortex densities, constructed with di�erent underlying base number
N . This was achieved by plotting the absolute mean displacement of vortices from they = 0 line, and watching
for sudden divergence, exempli�ed in �gure 10, for each combination ofN and %.

0.5 1.0 1.5
b

0.05

0.10

0.15

0.20

0.25

MeanAbsoluteTransverseDisplacement

Figure 10: A plot demonstrating the discontinuous jump in the separation of vortices at a certain critical � ,
indicating that a bifurcation has occurred, in this case at � = 1 :3. Other parameters wereN = 20,n = 1, � = 0.
The fact that the mean absolute dsiplacement is zero to the left of the bifurcation and non zero to the right
suggests it could be used as an order paramter. However, this parameter wouldn’t work for� = 0 :5, since single
row oscillations would make it non-zero below� c.

Once these critical� had been found, it was a case of investigating the bifurcations near and around each point,
within the constraints of time and accessibility of parameters.
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6.3 � c and the Vortex Number Ratio %

One of the key factors a�ecting the point at which a system �nds it energetically favourable to relax into a
bifurcated state is the density of vortices placed in the system, quanti�ed by the quantity %. Figure 11 shows
the transition point � c as a function of the parameter%= n=N . The �rst thing to notce is that there are, in
many cases, multiple densities for a given� c and, more worryingly, multiple � c for a given density. Whilst these
may simply be an issue of error in measurement, there is evidence to suggest a deeper issue. It is the only major
issue found through the course of this investigation and shall be discussed properly in section 6.6.

0.05 0.10 0.15 0.20 0.25 0.30
·

0.5

1.0

1.5

critical- b

Figure 11: The critical channel width � c plotted against the number ratio %, showing a clear correlation. There
were errors in measurement in both axes; each%has an error associated with the ratio of discreet numbers, and
each � c was measured with an uncertainty of� 0:05a0.

6.4 Defect Points

Defects are de�ned in this report to be vortices that �nd their energetic minimum travelling between two
bifurcated rows. By this de�nition, defects only happen when the channel has a separation corresponding to
� > � c. They have been observed to appear consistently in cases when the total number of free vortices in the
system, N + n is an odd number. Moreover, the system will always arrange itself to have an odd number of
defect points for oddN + n. It has also been observed that for evenN + n, there will always be an even number
of defect points (where zero is included as even).

The system was investigated under two di�erent initial con�gurations. In the �rst case, the vortices were placed
in the system with the same y-coordinate, so that they formed a single row. This single row was perturbed
from the expected equilibrium y = 0 by a small amount so as to avoid possible unwanted metastable states.
The second case was where the vortices were placed initially in two rows, arranged as they would be after a
bifurcation from a single row (so that the vortices alternated � y).

6.4.1 Bifurcation from a Single Row

The appearance of the bifurcation of the system when the free vortices are initialised such that they all begin
with the same y displacement could be considered as somewhat analogous to a water-steam transition, where
nucleation occurs around impurities in the liquid, forming bubbles which expand and propagate.

In the simulations, the single row relaxes down to they = 0 line before small ‘bubbles’ begin appearing along
the length of the chain. It is conjectured that since there has been no obvious pattern as to how quickly or
how many of these bubbles appear for a given initial con�guration, that the bubbles form around ‘numerical
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impurities’, inevitable when running computer simulations of this magnitude. These impurities may be born
out of rounding errors or systematic errors in the code.

The bubbles take the form of a group of vortices separating, such that half the vortices move to increase their
y coordinate, with their two nearest neighbours moving in the opposite direction.

As one expects, this asymmetry of a small part of the row having a transverse displacement will tend to
propagate through the system and the bubbles grow, since as a vortex comes into contact with the edge of a
bubble, it experiences a net force either up or down (depending on the direction of separation of the nearest
vortex in the bubble) and so itself separates from the main row. This is demonstrated in �gure 12.

Figure 12: A representative view of the left hand side of a bubble. The vortex labelled 1 on the edge of the
bubble will feel no net transverse force from vortices to the left, whereas it feels transverse forces from all
vortices in the bubble. If F 21

y is the transverse component of force from the vortex labelled 2, andF 31
y is the

transverse component of the force due to vortex 3 and so on, it is clear that since the strength of the vortex-
vortex interaction decreases with distance, thenjF 21

y j > jF 31
y j > jF 41

y j etc, and soF 21
y + F 31

y + F 41
y + ::: > 0

and the vortex labelled 1 will move in the positive y direction.

This process continues until each bubble meets another bubble, either due to the existence of multiple bubbles,
or through the imposition of periodic boundary conditions. At the points where the bubbles meet, there are
two possibilities as to what can happen. In some cases an equilibrium is reached from the balancing of forces
on the vortex at the meeting point, as demonstrated in �gure 13.

Even in cases where the two meeting bubbles are of unequal size (e.g. if one formed later than the other), so
that the forces are not exactly balanced, the system either rearranges itself so that they are, or the vortex in
the middle �nds its equilibrium displaced from the y = 0 line.

Figure 13: A representative view of the meeting of two bubbles. Considering the forces in the same way (and in
the same notation) as in �gure 12, it is clear that with the symmetry, then as long as jF 21

y j � j F 31
y j; jF 41

y j � j F 51
y j

etc, then (F 21
y + F 31

y ) + ( F 41
y + F 51

y ) + ::: ’ 0 and an equilibrium state is achieved.

There is an obvious second case where the meeting bubbles do not have the same number of rotational symme-
tries, leading to no defect points and a complete separation of all vortices at that point. This is demonstrated
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in �gure 14.

Figure 14: Another possibility of the meeting of two bubbles. The clear asymmetry inx axis leads to both the
principal contributions of the force acting in the same direction. Since clearlyjF 21

y + F 31
y j > jF 41

y + F 51
y j >

jF 61
y + F 71

y j etc, then (F 21
y + F 31

y ) + ( F 41
y + F 51

y ) + ( F 61
y + F 71

y ) + ::: < 0 and vortex 1 in this case will clearly
move in the negative y direction, forming two distinct and separate rows.

The number of bubbles forming in a system, whilst not having any clear exact relation to any of the associated
parameters, does seem to have loose positive correlation with the base number of free vorticesN , so that more
bubbles would form in a larger simulation, even between two systems of equal density. This adds weight to the
conjecture that the bubbles form around ‘numerical impurities’, since larger systems would have more space
available for impurities to take hold.

This may also contribute to the scaling issue discussed in section 6.6, where the critical transition appears to
happen earlier for systems with largerN

Once all bubbles have met, the system always rearranges itself so that there is an even or odd number of defect
points for even or oddN = n respectively, even if it remains meta-stable for a time before rearranging.

6.4.2 Reformation and Defect Formation from Two Rows

The concerns with the unpredictability of the single row bifurcation motivated the study of a di�erent initial
con�guration of the free vortices inside the channel. In order to have the double e�ect of verifying the reversibility
and robustness of the results, the system was initiated in two rows, in a formation similar to those observed
after bifurcation from one row, as in �gure 15

Figure 15: A schematic view of the initial positions of the free vortices. The usual convention of hollow white
free vortices and solid black �xed vortices is applied. The vertical displacements�y are chosen arbitrarily in
the simulation, since actual vertical displacement depends on� (see section 6.5.

The results generated using these initial conditions display a much greater degree of consistency. In short, if
the channel width is such that � < � c, the two rows reform into a single row under the force of the transverse
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channel edges. If� > � c and N + n is even, so that there are equal numbers of free vortices in both the initial
rows, then the two rows move in y until they �nd their equilibrium distance from one another and they stay
bifurcated. In the third case that N + n is odd, and there are initially an unequal number of vortices in the two
rows, a defect point is formed.

The third case is the only one that isn’t immediately physically intuitive. If one considers a system ofN = 6 and
n = 1, as in �gure 16, with the placement algorithm seen in appendix E, then it is not immediately apparent
where the asymmetry is. However, one must remember that periodic boundary conditions are imposed so that
�gure 17 is completely equivalent to �gure 16, which clearly shows the asymmetry in the system.

Figure 16: The initial positions of the free vortices for an N + n = 7 system. The dotted lines represent the
point at which the system wraps around due to periodic boundary conditions, so that both lines correspond to
the same point in the system.

Figure 17: The same system as shown in �gure 16, with shifted viewpoint, so that the dotted line represents
the same point in the system as the dotted lines in that �gure. In this view the asymmetry is clear, and one
would expect the two vortices either side of the boundary line to move downwards under the periodic force of
the pinned vortices.

The constituent vortices of the defects take much longer to relax into their �nal relative positions for a two row
initialisation, due to the longitudinal symmetry of the vortices to be pushed down in �gure 17. Once they do
settle, the defect takes on the same shape as those formed from a single row (in the cases where there is one
defect). An example of this shape can be seen in �gure 18

6.4.3 Distance Between Vortices

In order to gain a better understanding of the structure of defects, measurements were made of the nearest
neighbour distances between the individual free vortices making up the system. It was decided that, since
vortices owing through the system never overtake one another and vortices are numbered longitudinally along
the channel, the most e�cient way of measuring these distances was to take thenth vortex, and �nd the
magnitude of the vector connecting its position with the (n � 1)th vortex. The process is then repeated for the
nth vortex with the ( n � 2)th vortex.

For a single chain of vortices, it is obvious that the (n � 1)th vortex will be one of the nth ’s nearest neighbours
(with the other nearest neighbour being considered when the next, (n +1) th vortex is considered). The (n � 2)th

vortex will be the next nearest neighbour.

When the system is in a two row con�guration, these de�nitions aren’t quite so clear. Now the (n � 1)th vortex
will be on a di�erent row to the nth , with the ( n � 2)th being the nearest on the same row. From this point
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Figure 18: The defect formed from a system initialised with two rows of free vortices, with� = 0 :5, � = 1 :5,
N = 30 and n = 5. The points represent the positions of the free vortices at the end of the simulation.

notation is introduced so that the (n � 2)th vortex is the L-nearest neighbour (longitudinal), and the (n � 1)th

the T-nearest neighbour (transverse) when the system is in a stable two row formation. Figure 19 demonstrates
this setup.

Figure 19: De�nition of the T and L nearest neighbour distances.

Figure 20 shows each type of nearest neighbour distance for the system displayed in �gure 18. It is clear that in
the vicinity of a defect the distances between vortices are a�ected. Obviously the L-T-nearest neighbour system
isn’t an ideal measurement around the defect. The jump in the L-nearest neighbour distance can be explained
simply through the argument that the odd N + n, which causes the defect in the �rst place, leads to the ipping
of even and odd numbered vortices’ associated rows.

The T-nearest neighbour description gives a more useful picture, although still di�cult to visualise, of the
distances between vortices generally shrinking. Since the vortices repel each other, in a mesoscopic system such
as this one, one would generally expect vortices to maximise the distance between them. This suggests, as would
be intuitive, that the existence of a defect represents a local energy maximum. However this formation must be
observed to maintain as much symmetry in this system as possible under the periodic potential, meaning that
a defect would be energetically favourable against the vortex remaining in one of the two rows.

One more key observation that can be made from �gure 20 is that the L-nearest neighbour distance is universally
much greater than the T-nearest neighbour distance. This is because the simulations were set up such that
a single row of free vortices would have the same longitudinal density as the pinned rows. As such, after
bifurcation, each of the two rows had half the density of the pinned vortices. This means that the repulsive
force of the rows of pinned vortices far exceeded the repulsive force between the two free rows, and one would
expect the free rows to be squeezed together.
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Figure 20: A plot of both the T- and L- nearest neighbour distances between vortices for the defect displayed in
�gure 18, transposed by 15 units in the x direction to highlight the region of interest. Missing data at � x = 1
is due to the periodic boundary conditions.

6.5 Two Row Behaviour

The next characteristic of vortex ow to be investigated was the behaviours of vortices with � > � c, so that the
system is stable with two free rows. The two phenomena to be considered are transverse oscillations in the two
rows, even in situations of high commensurability. Secondly the dependence of channel width on the separation
of the two free rows of vortices is discussed.

6.5.1 Row Oscillations

Row oscillations were expected in situations where there were multiple rows of free vortices. The work of my
project partner clearly indicates that for situations of incommensurability ( � = 0 for two rows) one would expect
a certain oscillating transverse component of velocity. These situations are not the focus of this investigation,
and so the only situations considered here will be those of two-row commensurability (� = 0 :5).

It is less obvious that there should be transverse oscillations in the chain in this situation, but, as mentioned in
section 4.3, [5] show in mathematical detail that transverse oscillations emerge from the lagging and leading of
the phase of the two rows with respect to the pinning potential.

In order to explore this, a simulation was written to generate two stable free rows of vortices with commensurate
vortex density, with no defects, such that N = 30 , n = 0.

Firstly, the transverse component of position for a single vortex was recorded as a function of time for a single
vortex, as displayed in �gure 21. Transverse oscillation can clearly be seen. What makes this interesting is
when one considers the L- and T- nearest neighbours, de�ned in section 6.4.3, and in particular the L-nearest
neighbour, plotted in �gure 22. It is seen that the distance between two neighbouring vortices on the same line
varies with the same frequency as the transverse position of a vortex. One might think that this is elementary,
if the transverse position is oscillating then why shouldn’t the L-nearest neighbour distance? Figure 23 shows
the L-nearest neighbour distance for each vortex at a single point in time, showing that they are all identical.

Furthermore, when one plots the T-nearest neighbour as a function of time, one �nds that it is unchanging
(�gure 24). This suggests that the nth and (n � 1)th vortices pair up.

The other situation considered was that of higher than commensurate density, such thatn 6= 0. The same
measurements were made as withn = 0, showing similar, but more complicated results. Figures 25 and 26
show a similar relationship between the transverse position of a vortex and its L-nearest neighbour distance.
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Figure 21: The transverse component of position for a
single vortex for a representative period of time in a
stable bifurcated system (� = 0 :5,N = 30,n = 0, � =
1:5)

Figure 22: The L-nearest neighbour distance for the
same vortex in the same system as recorded in �gure 21.
The oscillation is seen to have the same period as the
transverse position component.

Figure 23: The L-nearest neighbour position for each
free vortex at a single point in time, for the same system
as �gure 21.

Figure 24: The T-nearest neighbour distance for the
same vortex in the same system as recorded in �gure 21,
showing that the distance stays constant.

The complication comes when one considers �gure 28, where the T-nearest neighbour distance is plotted as a
function of time, showing oscillatory behaviour of the same frequency as the L-nearest neighbour distance and
transverse position component.

To complete the comparison with the n = 0 case, �gure 27 shows the L-nearest neighbour distance at a single
point in time. The pattern hints at some underlying structure, perhaps a beat-frequency between the T- and
L- nearest neighbour distances. Unfortunately, under constraints of time, this behaviour was not thoroughly
investigated.

6.5.2 Distance Between Rows

Next, the distance between the two rows as a function of� was explored. All investigations here were conducted
with � = 0 :5 since the larger row oscillations associated with� = 0 would obscure the results. In order to
gather data, the simulation was run for enough time that the system would relax into its stable state. The
transverse displacement of each vortex from they = 0 line was then considered, and the di�erence between the
most negative and most positive results recorded. This distance was then plotted as a function of� in �gure 29.

This plot displays an apparently non-linear relation, whilst also raising once more the issue of scaling, with
the same densities giving di�erent lines for di�erent N . The two lines appear to be converging, although it
becomes di�cult to tell, since extending � any further enters into a regime where more than two rows becomes
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Figure 25: The transverse component of position for a
single vortex for a representative period of time in a
stable over�lled bifurcated system (� = 0 :5,N = 32,n =
0,� = 1 :5).

Figure 26: The L-nearest neighbour distance for the
same vortex in the same system as recorded in �gure 25.
The oscillation is seen to have the same period as the
transverse position component.

Figure 27: The T-nearest neighbour position for each
free vortex at a single point in time, for the same sys-
tem as �gure 25. This hints at some structure to the
transverse position oscillation.

Figure 28: The T-nearest neighbour distance for the
same vortex in the same system as recorded in �gure 25.
In contrast the the n = 0 case, this shows oscillations
of the same frequency as the transverse position compo-
nent.

favourable.

It is worth mentioning that the higher density rows �nd their equlibrium further apart, which is intuitive, since
one would expect them to be more repulsive.

6.6 Scaling

One question that has been raised at several points in the results is the issue of the scaling of results with the
size of the simulation domain, since two systems with di�erentN give di�erent results, even if n is chosen such
that %is the same. This can be seen in both �gure 29 and �gure 30, where plots in two di�erent situations with
di�erent N and identical %are seen to be di�erent.

There have been a few ideas as to the reason behind this disparity, such as the errors in the ratio of two discrete
numbers%= n

N , however no convincing theory has been developed and so this question will have to be consigned
to section 6.7.
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Figure 29: A plot of the maximum displacement of the two rows as a function of the additional channel width
parameter �

Figure 30: A plot exemplifying the disparity between di�erent N , even for the same%, via a comparison of� c
as a function of %.

6.7 Areas of Further Investigation

Due to the shear number of parameters associated with an investigation like this one, it would take a very long
time to attempt to characterise the behaviour of all aspects of vortex ow through thin channels, and certainly
more time than is available to a 4th year undergraduate project! Between my project partner and I we have
begun to uncover some of the behaviours associated with two parameters (� and � ) and their associated e�ects
under variation of %. The obvious suggestion to make for further study would be to investigate the e�ects of all
the other parameters available, such as driving force and dissipation.

However, there are many aspects to the� ! � c transition which would be interesting topics. During the course
of this project, an attempt was made to explore the microscopic behaviour of the system with� � � c, however
the phenomena exhibited had no distinguishable patterns and were altogether too complicated to understand
in the available time. However, a study to categorise the nature of the transition and the characteristics of its
criticality would certainly be of great interest.

Another phenomena observed but not understood was that of shock waves appearing after a single row bifur-
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cation. These occurred only in single row bifurcations, in situations where too many defect points are initially
formed and untwists. The late joining of an extra vortex to a gap in a relatively stable row causes a ripple of
transverse displacements along the row.

Some attmepts were made to provide an analytical, if qualitative, attempt at solving the system using a
trigonometric simpli�cation of the potential. The foundations of this are discussed in appendix C, but it would
certainly be worthwhile continuing towards this goal.

From a personal point of view, by far the most interesting aspect of the� related behaviour was that of row
oscillations, explored in section 6.5.1 and in particular the nature of the transverse vortex position oscillations.
Given more time, this would certainly have been the next point of study.

7 Conclusions

Over the course of this investigation a number of interesting results have been generated, including replication of
key results from the existing literature and consideration of some situations which to the best of my knowledge
have not been considered before.

The novelty of this project lies in the extremely narrow channel width and high order in the periodic pinning
potential. These two factors have led to some extremely interesting qualitative results, including defect points,
non-trivial row oscillations and convincing relationships between free row separation with respect to changing
channel width.

The investigation overall had an incredible breadth of available phenomena to study, and our results have
certainly hinted at the richness of the associated physics. I believe that this topic certainly warrants further
study and hope that this report will motivate a future physicist to undertake it.
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A Supercurrent Velocity

This appendix is concerned with deriving an expression for the supercurrent velocity. Starting from an expression
for the quantum mechanical probability current density [20];

Jp =
� j ~
2m

[ � (r  ) �  (r  ) � ] (34)

Next, a gauge transformation is made such that;

 ! j  jej’ (35)

r  !
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r +
2je
~

�
j jej’ (36)

By applying this Gauge transformation to equation 34 we �nd;
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By de�ning the superuid velocity[8];

Je = 2ej j2v s (42)

Equation 41 is simply multiplied by the charge e to give an electrical current, and upon substitution into
equation 42 an expression can be obtained for the supercurrent velocity;

v s =
~

2m
r ’ �

e
m

A (43)

B Soliton solution to the Sine Gordon Equation

In this appendix it is demonstrated that equation 27 is indeed a solution to the Sine-Gordon equation. We start
by making an ansatz that the Sine-Gordon equation has a solution of the form;

� = 4 tan � 1
�

� (x)
 (t)

�
(44)

This can be easily di�erentiated to give;
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The sin � term is also analytic[24], giving;

sin � =
4(� 3 � � 3 )

(� 2 +  2)2 (49)

Adopting the notation @�
@x � � x , @2  

@t2 �  tt etc, and substituting all relevant expressions into the Sine-Gordon
equation gives;

(� 2 +  2)(  � xx + � tt ) = 2 � � 2
x + 2 �  2

t + � 3 �  � 3 (50)

(� 2 +  3)� xx + ( � 2 + � 3) tt = 2 �� 2
x + 2   2

t + � 3 �  � 3 (51)
 2

�
� xx +

� 2

 
 tt = (  2 + 2  2

t �   tt ) + ( � � 2 + 2 � 2
x � �� xx ) (52)

The next step is to di�erentiate both sides with respect to both x and t and rearrange;
� xxx

� 2� x
�

� xx

� 3 =
 tt

 3 �
 ttt

 2 t
(53)

The left hand side and right are completely independent oft and x respectively, so that one can use separation
of variables to write two related ordinary di�erential equations, where the constant has been chosen under the
advice of [23];

� xxx

� 2� x
�

� xx

� 3 = � 6k2 =
 tt

 3 �
 ttt

 2 t
(54)

These ODEs can be re-written in a more transparent form;
d

dx

�
� xx

�

�
= � 4k2�� x (55)

d
dt

�
 tt

 

�
= 4k2  t (56)

Both of these can easily be twice integrated;

� 2
x = � k2� 4 + � 1� 2 + � 1 (57)

 2
t = k2 4 + � 2 2 + � 2 (58)

Substitution of these expressions into equation 52 and comparison of coe�cients of� 2,  2 and the constant
terms yields the relations � 1 � � 2 = 1 and � 1 + � 2 = 0. Setting � 1 = m2 and � 1 = n2 we �nally obtain the
expressions;

� 2
x = � k2� 4 + m2� 2 + n2 (59)

 2
t = k2 4 + (1 � m2) 2 � n2 (60)

C Trigonometric Reconstruction of the Pinning Potential

In order to ensure a certain amount of con�dence in the simulation results, an e�ort was made to consider the
system semi-analytically, using simpler mathematical objects than the Bessel functions in order to mimic the
pinning potential. It was found that the best results were achieved using a combination of trigonometric and
exponential functions transverse to the channel, and a sum of displaced Gaussians along the channel. The �nal
form of the approximation is given in equation 61.

V ’
1
20

sin2 (’y ) + exp
�
y4�

tan2 (’y )
1X

m = �1

exp
�
� 25(x � ma0)2�

(61)

’ =
�

2(b0 + � )
(62)

This form gives a reasonable agreement with the Bessel potential, although the rate at which the potential falls
o� from the channel edges was challenging to reproduce. This will limit the exact reproduction of results of the
Bessel function potential, but should not stop some qualitative agreement, as can be seen in �gure 31.
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Figure 31: A plot of the di�erence between the trigonometrically approximated potential and the potential
generated by Bessel function routines.

C.1 Calculation of the Minima

In order to provide a basic check that the approximate potential would show similar behaviour, it was di�eren-
tiated and the extrema found. The minima in y are trivial.
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The minima in x are slightly less trivial to obtain. The sum of Gaussians must be rewritten
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so that m increases in steps of 2. A change of variablesk = 2m is then employed;
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Upon substitution x = ( m + 1
2 )a0 = (k+1) a0
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And thus the function has minima at all x = m + 1
2 , matching the behaviour of the Bessel function potentials.

Unfortunately under the constraints of time this trigonometric reproduction of the pinning potential was not
utilised. It would have been used in a simpli�ed analytical calculation designed to give the same qualitative
behaviour as the more accurate simulations.

D 2D Vector Class

The following is the class written to handle 2 dimensional vectors. It contains the following functionality;

� Calculation of Vector length

� Normalisation

� Calculation of the vector between two points

� Vector addition

� Multiplication by a scalar

The code follows;

#include <cmath>
class vector2d{
public:
double x;
double y; //coordinates
vector2d(double x_in=0.0, double y_in=0.0);//constructor
double getx();
double gety();//get coordinates
double magnitude();//give magnitude
vector2d normalised();//normalise the vector
vector2d vector_from(vector2d v);//get the vector from another vector to this one
vector2d operator+(vector2d& v);//vector addition
vector2d operator*(double a);//multiplication by a scalar
};
vector2d::vector2d(double x_in, double y_in){
x = x_in;
y = y_in;
}
double vector2d::getx(){return x;}
double vector2d::gety(){return y;}//returns vector components
double vector2d::magnitude(){return sqrt((x*x)+(y*y));}//returns the magnitude of the vector

Page 31 of 35



Jim Barrett Project Dissertation

vector2d vector2d::normalised(){
vector2d v(x,y);
double size = v.magnitude();
return v*(1/size);
}//normalises the vector and returns it
vector2d vector2d::vector_from(vector2d v){
vector2d a(x-v.getx(),y-v.gety());
return a;
}//returns the vector from the argument vector
vector2d vector2d::operator+(vector2d& v){return vector2d(x+v.x, y+v.y);}//adding vectors
vector2d vector2d::operator*(double a){return vector2d(x*a,y*a);}//multiplication by a scalar

E Basic Code

The following is a base program, upon which small changes were made so as to adapt it to the di�erent
investigations carried out.

#include <cmath>
#include <vector>
#include <fstream>
#include <iostream>
#include "vector2d.h"
#include <boost/math/special_functions/bessel.hpp>
using namespace std;
struct particle{
vector2d pos;
vector2d vel;
vector2d acc;
};
void update(particle&, double);
double bessel(double,double);
double bessel0(double,double);
int main() {
//output files
ofstream outpos("position.dat"), fixedout("fixed.dat"), movingout("moving.dat");
//moving variables
vector<particle> moving;
double mov_xsep = 1.0;
double mov_number = 37;
double dist_to_left, dist_to_right;
//fixed variables
int no_per_row = 33;
vector<particle> top_fixed;
vector<particle> bottom_fixed;
vector<particle> other_top_fixed;
vector<particle> other_bottom_fixed;
double beta = 1.1;
double fix_xsep = 1.0, fix_ysep = 3.464101615137754587055/2.0 ;
double offset = 0.0;
//other variables
vector2d force(0.1,0);
double dissip = 0.5;
double time=0, runtime = 200, timestep = 0.05;
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double separation;
vector2d leftedge, rightedge;
double potential;
double xposition, yposition;
//counters and dummys
vector2d vec1(0,0), vec2(0,0);
particle par1;
int i=0, j=0, d=0;
double c=0;
bool flag;
double xdisp, ydisp;
par1.vel = vector2d(0,0);
par1.acc = vector2d(0,0);//particles starting acceleration/velocity
//set up fixed particles
for (c=0; c<no_per_row+20; c++){
flag = false;
for (d=1; d<6; d++){
if (d==1) {xdisp = offset; ydisp = beta/2;}
else {xdisp = (0.5*fix_xsep)+ offset; ydisp = beta/2;}
if (flag) {vec1 = vector2d((c*fix_xsep)+xdisp,0.5*d*fix_ysep + ydisp); flag == false;}
else {vec1 = vector2d((c*fix_xsep)+offset,0.5*d*fix_ysep + ydisp); flag == true;}
par1.pos = vec1;
other_top_fixed.push_back(par1);
xdisp = (0.5*fix_xsep);
if (flag) {vec1 = vector2d((c*fix_xsep)+xdisp,-0.5*d*fix_ysep - ydisp); flag = false;}
else {vec1 = vector2d((c*fix_xsep),-0.5*d*fix_ysep - ydisp); flag = true;}
par1.pos = vec1;
other_bottom_fixed.push_back(par1);
}
}
leftedge = vector2d(10*fix_xsep,0);
rightedge = vector2d((no_per_row+9)*fix_xsep,0);
cout<<leftedge.getx()<<" "<<rightedge.getx()<<endl;
mov_xsep = (leftedge.vector_from(rightedge).magnitude()-1.0)/mov_number;
cout<<mov_xsep<<endl;
flag = true;
for (c=0.5; c<=mov_number; c++){//place moving particles
if (flag) {par1.pos = vector2d(leftedge.getx()+(c*mov_xsep),0.1); flag = false;}
else {par1.pos = vector2d(leftedge.getx()+(c*mov_xsep),-0.1); flag = true;}
moving.push_back(par1);
}
cout<<moving.size()<<" "<<mov_number<<endl;
//for (i=0; i<moving.size(); i++) outpos<<moving[i].pos.getx()<<" "<<moving[i].pos.gety()<<endl;
//cin>>i;
for (time = 0; time < runtime; time+=timestep){
for (i=0; i<moving.size(); i++){
//reset variable dummy vectors
vec1 = vector2d(0,0);
vec2 = force;
//calculate force from other moving particles
for (j=0; j<moving.size(); j++){
if (i!=j){
vec1 = moving[i].pos.vector_from(moving[j].pos);
separation = vec1.magnitude();
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vec1 = vec1.normalised();
vec1 = vec1*bessel(separation,1.0);
vec2 = vec2 + vec1;
}
}
for (j=0; j<other_top_fixed.size(); j++){
vec1 = moving[i].pos.vector_from(other_top_fixed[j].pos);
separation = vec1.magnitude();
vec1 = vec1.normalised();
vec1 = vec1*bessel(separation,1.0);
vec2 = vec2 + vec1;
vec1 = moving[i].pos.vector_from(other_bottom_fixed[j].pos);
separation = vec1.magnitude();
vec1 = vec1.normalised();
vec1 = vec1*bessel(separation,1.0);
vec2 = vec2 + vec1;
}
for(c=0; c<2; c++){
if (c==0){
vec1 = moving[i].pos.vector_from(rightedge);
par1.pos = leftedge + vec1;
}
else if (c==1){
vec1 = moving[i].pos.vector_from(leftedge);
par1.pos = rightedge + vec1;
}
for (j=0; j<moving.size(); j++){
vec1 = par1.pos.vector_from(moving[j].pos);
separation = vec1.magnitude();
vec1 = vec1.normalised();
vec1 = vec1*bessel(separation,1.0);
vec2 = vec2 + vec1;
}
}
//driving force, dissipation and update
vec1 = moving[i].vel*(dissip * -1.0);
vec2 = vec2 + vec1;
moving[i].acc = vec2;
//cout<<vec2.gety()<<endl;
}
for (i=0; i<moving.size(); i++){
update(moving[i],timestep);
outpos<<moving[i].pos.getx()<<" "<<moving[i].pos.gety()<<endl;
}
cout<<time*100/runtime<<"%"<<endl;
//PBCs (i.e particle leaving from right is brought into left)
for (i=0; i<moving.size(); i++){
if (moving[i].pos.getx() > rightedge.getx()){
moving[i].pos = moving[i].pos.vector_from(rightedge) + leftedge;
}
else if (moving[i].pos.getx() < leftedge.getx()){
moving[i].pos = moving[i].pos.vector_from(leftedge) + rightedge;
}
}
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}
for (i=0; i<moving.size(); i++) movingout<<moving[i].pos.getx()<<" "<<moving[i].pos.gety()<<endl;
return 0;
}
//update function, RK2 (?)
void update(particle &p, double dt){
vector2d dacc, dvel;
dacc = p.acc*dt;
p.vel = p.vel + dacc;
dvel = p.vel*dt*0.5;
dvel = p.vel + dvel;
dvel = dvel*dt;
p.pos = p.pos + dvel;
//return p;
}
//Bessel force only calculated when it’s not-negligible
double bessel(double x, double pen){
double f=0;
if ((x/pen) < 10) f= boost::math::cyl_bessel_k(1,x/pen);
return f;
}
double bessel0(double x, double pen){
double f=0;
if ((x/pen) < 10) f= boost::math::cyl_bessel_k(0,x/pen);
return f;
}
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